kdrag.tactics
Tactics are helpers that organize calls to the kernel. The code of these helpers don’t have to be trusted.
Functions
|
Prove a theorem using a list of previously proved lemmas. |
|
|
|
Simplify an expression using simp and return the resulting equality as a proof. |
Classes
|
Calc is for equational reasoning. |
|
|
|
A tactic class for interactive proofs. |
- class kdrag.tactics.Calc(vars: list[ExprRef], lhs: ExprRef, assume=[])
Bases:
object
Calc is for equational reasoning. One can write a sequence of formulas interspersed with useful lemmas.
- Parameters:
vars (list[ExprRef])
lhs (ExprRef)
- eq(rhs, by=[], **kwargs)
- ge(rhs, by=[])
- gt(rhs, by=[])
- le(rhs, by=[])
- lt(rhs, by=[])
- qed(**kwargs)
- class kdrag.tactics.Goal(sig, ctx, goal)
Bases:
NamedTuple
- Parameters:
sig (list[ExprRef])
ctx (list[BoolRef])
goal (BoolRef | QuantifierRef)
- count(value, /)
Return number of occurrences of value.
- ctx: list[BoolRef]
Alias for field number 1
- goal: BoolRef | QuantifierRef
Alias for field number 2
- index(value, start=0, stop=9223372036854775807, /)
Return first index of value.
Raises ValueError if the value is not present.
- is_empty() bool
- Return type:
bool
- sig: list[ExprRef]
Alias for field number 0
- class kdrag.tactics.Lemma(goal: BoolRef)
Bases:
object
A tactic class for interactive proofs. Lemma stores a mutational partial proof state that can be changed via tactic methods. Once proof is completed, an actual kd.Proof object is constructed by the Lemma.qed method. Lemma is not part of the trusted code base and bugs in its implementation are not a soundness concern. Lemma “merely” orchestrates and infers info for calls to the kernel. In my experience it is best to run the entire Lemma mutation in a single Jupyter cell while experimenting.
- Parameters:
goal (BoolRef)
- admit() Goal
admit the current goal without proof. Don’t feel bad about keeping yourself moving, but be aware that you’re not done.
>>> l = Lemma(smt.BoolVal(False)) # a false goal >>> _ = l.admit() >>> l.qed() |- False
- Return type:
- assumption()
Exact match of goal in the context
- auto(**kwargs)
auto discharges a goal using z3. It forwards all parameters to kd.prove
- cases(t)
cases let’s us consider an object by cases. We consider whether Bools are True or False We consider the different constructors for datatypes
>>> import kdrag.theories.nat as nat >>> x = smt.Const("x", nat.Nat) >>> l = Lemma(smt.BoolVal(True)) >>> l.cases(x) [is(Z, x) == True] ?|- True >>> l.auto() # next case [is(S, x) == True] ?|- True
- clear(n: int)
Remove a hypothesis from the context
- Parameters:
n (int)
- copy()
Lemma methods mutates the proof state. This can make you a copy. Does not copy the pushed Lemma stack.
>>> p,q = smt.Bools("p q") >>> l = Lemma(smt.Implies(p,q)) >>> l1 = l.copy() >>> l.intros() [p] ?|- q >>> l1 [] ?|- Implies(p, q)
- einstan(n)
einstan opens an exists quantifier in context and returns the fresh eigenvariable. [exists x, p(x)] ?|- goal becomes p(x) ?|- goal
- eq(rhs: ExprRef, **kwargs)
replace rhs in equational goal
- Parameters:
rhs (ExprRef)
- exists(*ts)
Give terms ts to satisfy an exists goal ?|- exists x, p(x) becomes ?|- p(ts)
>>> x,y = smt.Ints("x y") >>> Lemma(smt.Exists([x], x == y)).exists(y) [] ?|- y == y
- ext()
Apply extensionality to a goal
>>> x = smt.Int("x") >>> l = Lemma(smt.Lambda([x], smt.IntVal(1)) == smt.K(smt.IntSort(), smt.IntVal(1))) >>> _ = l.ext()
- fix() ExprRef
Open a single ForAll quantifier
>>> x = smt.Int("x") >>> l = Lemma(smt.ForAll([x], x != x + 1)) >>> _x = l.fix() >>> l [x!...] ; [] ?|- x!... != x!... + 1 >>> _x.eq(x) False
- Return type:
ExprRef
- fixes() list[ExprRef]
fixes opens a forall quantifier. ?|- forall x, p(x) becomes x ?|- p(x)
>>> x,y = smt.Ints("x y") >>> l = Lemma(kd.QForAll([x,y], y >= 0, x + y >= x)) >>> _x, _y = l.fixes() >>> l [x!..., y!...] ?|- Implies(y!... >= 0, x!... + y!... >= x!...) >>> _x, _y (x!..., y!...) >>> _x.eq(x) False
- Return type:
list[ExprRef]
- generalize(*vs: ExprRef)
Put variables forall quantified back on goal. Useful for strengthening induction hypotheses.
- Parameters:
vs (ExprRef)
- have(conc: BoolRef, **kwargs)
Prove the given formula and add it to the current context
- Parameters:
conc (BoolRef)
- induct(x: ExprRef, using: Callable[[ExprRef, Callable[[ExprRef, BoolRef], BoolRef]], Proof] | None = None)
Apply an induction lemma instantiated on x.
- Parameters:
x (ExprRef)
using (Callable[[ExprRef, Callable[[ExprRef, BoolRef], BoolRef]], Proof] | None)
- instan(n, *ts)
Instantiate a universal quantifier in the context.
>>> x,y = smt.Ints("x y") >>> l = Lemma(smt.Implies(smt.ForAll([x],x == y), True)) >>> l.intros() [ForAll(x, x == y)] ?|- True >>> l.instan(0, smt.IntVal(42)) [ForAll(x, x == y), 42 == y] ?|- True
- intros() ExprRef | list[ExprRef] | Goal
intros opens an implication. ?|- p -> q becomes p ?|- q
>>> p,q,r = smt.Bools("p q r") >>> l = Lemma(smt.Implies(p, q)) >>> l.intros() [p] ?|- q >>> l = Lemma(smt.Not(q)) >>> l.intros() [q] ?|- False
- Return type:
ExprRef | list[ExprRef] | Goal
- left(n=0)
Select the left case of an Or goal.
>>> p,q = smt.Bools("p q") >>> l = Lemma(smt.Or(p,q)) >>> l.left() [] ?|- p
- newgoal(newgoal: BoolRef, **kwargs)
Try to show newgoal is sufficient to prove current goal
- Parameters:
newgoal (BoolRef)
- pop()
Pop state off the Lemma stack.
- push()
Push a copy of the current Lemma state onto a stack. This why you can try things out, and if they fail
>>> p,q = smt.Bools("p q") >>> l = Lemma(smt.Implies(p,q)) >>> l.push() [] ?|- Implies(p, q) >>> l.intros() [p] ?|- q >>> l.pop() [] ?|- Implies(p, q)
- qed(**kwargs) Proof
return the actual final Proof of the lemma that was defined at the beginning.
- Return type:
- rewrite(rule: Proof | int, at=None, rev=False)
rewrite allows you to apply rewrite rule (which may either be a Proof or an index into the context) to the goal or to the context.
- Parameters:
rule (Proof | int)
- right()
Select the right case of an Or goal.
>>> p,q = smt.Bools("p q") >>> l = Lemma(smt.Or(p,q)) >>> l.right() [] ?|- q
- search(*args, at=None, db={})
Search the lemma database for things that may match the current goal.
>>> import kdrag.theories.nat as nat >>> n = smt.Const("n", nat.Nat) >>> l = Lemma(smt.ForAll([n], nat.Z + n == n)) >>> ("kdrag.theories.nat.add_Z", nat.add_Z) in l.search().keys() True >>> ("kdrag.theories.nat.add_S", nat.add_S) in l.search().keys() False >>> ("kdrag.theories.nat.add_S", nat.add_S) in l.search(nat.add).keys() True
- show(thm: BoolRef)
To document the current goal
- Parameters:
thm (BoolRef)
- simp(at=None)
Use built in z3 simplifier. May be useful for boolean, arithmetic, lambda, and array simplifications.
>>> x,y = smt.Ints("x y") >>> l = Lemma(x + y == y + x) >>> l.simp() [] ?|- True >>> l = Lemma(x == 3 + y + 7) >>> l.simp() [] ?|- x == 10 + y >>> l = Lemma(smt.Lambda([x], x + 1)[3] == y) >>> l.simp() [] ?|- 4 == y
- split(at=None)
split breaks apart an And or bi-implication == goal. The optional keyword at allows you to break apart an And or Or in the context
>>> p = smt.Bool("p") >>> l = Lemma(smt.And(True,p)) >>> l.split() [] ?|- True >>> l.auto() # next goal [] ?|- p
- symm()
Swap left and right hand side of equational goal
>>> x,y = smt.Ints("x y") >>> Lemma(x == y).symm() [] ?|- y == x
- unfold(*decls: FuncDeclRef, at=None)
Unfold all definitions once. If declarations are given, only those are unfolded.
>>> import kdrag.theories.nat as nat >>> l = Lemma(nat.Z + nat.Z == nat.Z) >>> l [] ?|- add(Z, Z) == Z >>> l.unfold(nat.double) # does not unfold add [] ?|- add(Z, Z) == Z >>> l.unfold() [] ?|- If(is(Z, Z), Z, S(add(pred(Z), Z))) == Z
- Parameters:
decls (FuncDeclRef)
- kdrag.tactics.prove(thm: BoolRef, by: Proof | Sequence[Proof] = [], admit=False, timeout=1000, dump=False, solver=None, defns=True, simps={}) Proof
Prove a theorem using a list of previously proved lemmas.
In essence prove(Implies(by, thm)).
- Parameters:
thm (smt.BoolRef) – The theorem to prove.
thm – The theorem to prove.
by (list[Proof]) – A list of previously proved lemmas.
admit (bool) – If True, admit the theorem without proof.
- Returns:
A proof object of thm
- Return type:
>>> prove(smt.BoolVal(True)) |- True
>>> prove(smt.RealVal(1) >= smt.RealVal(0)) |- 1 >= 0
- kdrag.tactics.simp_tac(e: ExprRef) Proof
Simplify an expression using simp and return the resulting equality as a proof.
>>> import kdrag.theories.nat as nat >>> simp_tac(nat.Z + nat.S(nat.Z)) |- add(Z, S(Z)) == S(Z)
- Parameters:
e (ExprRef)
- Return type:
"""
Tactics are helpers that organize calls to the kernel. The code of these helpers don't have to be trusted.
"""
import kdrag as kd
import kdrag.smt as smt
from enum import IntEnum
import operator as op
from . import config
from typing import NamedTuple, Optional, Sequence, Callable
import pprint
class Calc:
"""
Calc is for equational reasoning.
One can write a sequence of formulas interspersed with useful lemmas.
"""
class _Mode(IntEnum):
EQ = 0
LE = 1
LT = 2
GT = 3
GE = 4
def __str__(self):
names = ["==", "<=", "<", ">", ">="]
return names[self]
@property
def op(self):
ops = [op.eq, op.le, op.lt, op.gt, op.ge]
return ops[self]
def trans(self, y):
"""Allowed transitions"""
if self == y or self == self.EQ:
return True
else:
if self == self.LE and y == self.LT or self == self.GE and y == self.GT:
return True
else:
return False
def __init__(self, vars: list[smt.ExprRef], lhs: smt.ExprRef, assume=[]):
self.vars = vars
self.lhs = lhs
self.iterm = lhs # intermediate term
self.assume = assume
self.lemma = kd.kernel.prove(self._forall(smt.Eq(lhs, lhs)))
self.mode = self._Mode.EQ
def _forall(
self, body: smt.BoolRef | smt.QuantifierRef
) -> smt.BoolRef | smt.QuantifierRef:
if len(self.assume) == 1:
body = smt.Implies(self.assume[0], body)
elif len(self.assume) > 1:
body = smt.Implies(smt.And(self.assume), body)
if len(self.vars) == 0:
return body
else:
return smt.ForAll(self.vars, body)
def _lemma(self, rhs, by, **kwargs):
op = self.mode.op
l = kd.prove(self._forall(op(self.iterm, rhs)), by=by, **kwargs)
self.lemma = kd.kernel.prove(
self._forall(op(self.lhs, rhs)), by=[l, self.lemma], **kwargs
)
self.iterm = rhs
def eq(self, rhs, by=[], **kwargs):
self._lemma(rhs, by, **kwargs)
return self
def _set_mode(self, newmode):
if not self.mode.trans(newmode):
raise kd.kernel.LemmaError(
"Cannot change from", self.mode, "to", newmode, "in Calc"
)
self.mode = newmode
def le(self, rhs, by=[]):
self._set_mode(Calc._Mode.LE)
self._lemma(rhs, by)
return self
def lt(self, rhs, by=[]):
self._set_mode(Calc._Mode.LT)
self._lemma(rhs, by)
return self
def ge(self, rhs, by=[]):
self._set_mode(Calc._Mode.GE)
self._lemma(rhs, by)
return self
def gt(self, rhs, by=[]):
self._set_mode(Calc._Mode.GT)
self._lemma(rhs, by)
return self
def __repr__(self):
return "... " + str(self.mode) + " " + repr(self.iterm)
def qed(self, **kwargs):
return self.lemma
def simp_tac(e: smt.ExprRef) -> kd.kernel.Proof:
"""
Simplify an expression using simp and return the resulting equality as a proof.
>>> import kdrag.theories.nat as nat
>>> simp_tac(nat.Z + nat.S(nat.Z))
|- add(Z, S(Z)) == S(Z)
"""
trace = []
e1 = kd.simp(e, trace=trace)
return kd.kernel.prove(smt.Eq(e, e1), by=trace)
simps = {}
def prove(
thm: smt.BoolRef,
by: kd.kernel.Proof | Sequence[kd.kernel.Proof] = [],
admit=False,
timeout=1000,
dump=False,
solver=None,
defns=True,
simps=simps,
) -> kd.kernel.Proof:
"""Prove a theorem using a list of previously proved lemmas.
In essence `prove(Implies(by, thm))`.
:param thm: The theorem to prove.
Args:
thm (smt.BoolRef): The theorem to prove.
by (list[Proof]): A list of previously proved lemmas.
admit (bool): If True, admit the theorem without proof.
Returns:
Proof: A proof object of thm
>>> prove(smt.BoolVal(True))
|- True
>>> prove(smt.RealVal(1) >= smt.RealVal(0))
|- 1 >= 0
"""
if isinstance(by, kd.Proof):
by = [by]
if admit:
return kd.kernel.prove(thm, by, admit=True)
else:
if solver is None:
solver = config.solver
s = solver() # type: ignore
else:
s = solver()
s.set("timeout", timeout)
for n, p in enumerate(by):
if not kd.kernel.is_proof(p):
raise kd.kernel.LemmaError("In by reasons:", p, "is not a Proof object")
s.assert_and_track(p.thm, "by_{}".format(n))
if len(by) == 0 and defns:
# TODO: consider pruning definitions to those in goal.
for v in kd.kernel.defns.values():
s.add(v.ax.thm)
for v in simps.values():
s.add(v)
s.assert_and_track(smt.Not(thm), "knuckledragger_goal")
if dump:
print(s.sexpr())
print(smt.solver)
if smt.solver == smt.Z3SOLVER:
"""
def log_instance(pr, clause, myst):
print(type(pr))
if pr.decl().name() == "inst":
q = pr.arg(0)
for ch in pr.children():
if ch.decl().name() == "bind":
print("Binding")
print(q)
print(ch.children())
break
onc = smt.OnClause(s, log_instance)
"""
smt.OnClause(s, lambda pr, clause, myst: print(pr, clause, myst))
res = s.check()
if res != smt.unsat:
if res == smt.sat:
raise kd.kernel.LemmaError(thm, by, "Countermodel", s.model())
raise kd.kernel.LemmaError("prove", thm, by, res)
else:
core = s.unsat_core()
if smt.Bool("knuckledragger_goal") not in core:
raise kd.kernel.LemmaError(
thm,
core,
"Inconsistent lemmas. Goal is not used for proof. Something has gone awry.",
)
if dump and len(core) < len(by) + 1:
print("WARNING: Unneeded assumptions. Used", core, thm)
return kd.kernel.prove(
thm, by, admit=admit, timeout=timeout, dump=dump, solver=solver
)
def simp(t: smt.ExprRef, by: list[kd.kernel.Proof] = [], **kwargs) -> kd.kernel.Proof:
rules = [kd.rewrite.rule_of_theorem(lem.thm) for lem in by]
t1 = kd.rewrite.rewrite(t, rules)
return prove(smt.Eq(t, t1), by=by, **kwargs)
class Goal(NamedTuple):
# TODO: also put eigenvariables, unification variables in here
sig: list[smt.ExprRef]
ctx: list[smt.BoolRef]
goal: smt.BoolRef | smt.QuantifierRef
def __repr__(self):
if self.is_empty():
return "Nothing to do!"
ctxrepr = pprint.pformat(self.ctx)
goalrepr = repr(self.goal)
if len(ctxrepr) + len(goalrepr) <= 75:
goalctx = ctxrepr + " ?|- " + repr(self.goal)
else:
goalctx = ctxrepr + "\n?|- " + repr(self.goal)
if len(self.sig) == 0:
return goalctx
else:
sigrepr = pprint.pformat(self.sig)
if len(sigrepr) + len(goalctx) >= 80:
return repr(self.sig) + ";\n" + goalctx
else:
return repr(self.sig) + " ; " + goalctx
@classmethod
def empty(cls) -> "Goal":
return Goal(
[],
[],
smt.Or(
smt.BoolVal(True), smt.Bool("KNUCKLEDRAGGER_EMPTYGOAL")
), # trivial _and_ specially marked
)
def is_empty(self) -> bool:
return self == Goal.empty()
class Lemma:
"""
A tactic class for interactive proofs.
`Lemma` stores a mutational partial proof state that can be changed via tactic methods.
Once proof is completed, an actual `kd.Proof` object is constructed by the `Lemma.qed` method.
`Lemma` is not part of the trusted code base and bugs in its implementation are not a soundness concern.
`Lemma` "merely" orchestrates and infers info for calls to the kernel.
In my experience it is best to run the entire Lemma mutation in a single Jupyter cell while experimenting.
"""
def __init__(self, goal: smt.BoolRef):
self.lemmas = []
self.thm = goal
self.goals = [Goal(sig=[], ctx=[], goal=goal)]
self.pushed = None
def copy(self):
"""
Lemma methods mutates the proof state. This can make you a copy.
Does not copy the pushed Lemma stack.
>>> p,q = smt.Bools("p q")
>>> l = Lemma(smt.Implies(p,q))
>>> l1 = l.copy()
>>> l.intros()
[p] ?|- q
>>> l1
[] ?|- Implies(p, q)
"""
lemma_cpy = Lemma(self.thm)
lemma_cpy.goals = self.goals.copy()
lemma_cpy.lemmas = self.lemmas.copy()
lemma_cpy.pushed = None
return lemma_cpy
def push(self):
"""
Push a copy of the current Lemma state onto a stack.
This why you can try things out, and if they fail
>>> p,q = smt.Bools("p q")
>>> l = Lemma(smt.Implies(p,q))
>>> l.push()
[] ?|- Implies(p, q)
>>> l.intros()
[p] ?|- q
>>> l.pop()
[] ?|- Implies(p, q)
"""
cpy = self.copy()
cpy.pushed = self.pushed
self.pushed = cpy
return self.top_goal()
def pop(self):
"""
Pop state off the Lemma stack.
"""
assert self.pushed is not None
self.lemmas = self.pushed.lemmas # maybe we should store lemmas incrementally?
self.goals = self.pushed.goals
self.pushed = self.pushed.pushed
return self.top_goal()
def search(self, *args, at=None, db={}):
"""
Search the lemma database for things that may match the current goal.
>>> import kdrag.theories.nat as nat
>>> n = smt.Const("n", nat.Nat)
>>> l = Lemma(smt.ForAll([n], nat.Z + n == n))
>>> ("kdrag.theories.nat.add_Z", nat.add_Z) in l.search().keys()
True
>>> ("kdrag.theories.nat.add_S", nat.add_S) in l.search().keys()
False
>>> ("kdrag.theories.nat.add_S", nat.add_S) in l.search(nat.add).keys()
True
"""
if at is not None:
return kd.utils.search(self.top_goal().ctx[at], db=db)
if len(args) == 0:
return kd.utils.search(self.top_goal().goal, db=db)
else:
return kd.utils.search(*args, db=db)
def fixes(self) -> list[smt.ExprRef]:
"""fixes opens a forall quantifier. ?|- forall x, p(x) becomes x ?|- p(x)
>>> x,y = smt.Ints("x y")
>>> l = Lemma(kd.QForAll([x,y], y >= 0, x + y >= x))
>>> _x, _y = l.fixes()
>>> l
[x!..., y!...] ?|- Implies(y!... >= 0, x!... + y!... >= x!...)
>>> _x, _y
(x!..., y!...)
>>> _x.eq(x)
False
"""
goalctx = self.goals[-1]
goal = goalctx.goal
if isinstance(goal, smt.QuantifierRef) and goal.is_forall():
self.goals.pop()
vs, herb_lemma = kd.kernel.herb(goal)
self.lemmas.append(herb_lemma)
self.goals.append(
goalctx._replace(sig=goalctx.sig + vs, goal=herb_lemma.thm.arg(0))
)
return vs
else:
raise ValueError(f"fixes tactic failed. Not a forall {goal}")
def fix(self) -> smt.ExprRef:
"""
Open a single ForAll quantifier
>>> x = smt.Int("x")
>>> l = Lemma(smt.ForAll([x], x != x + 1))
>>> _x = l.fix()
>>> l
[x!...] ; [] ?|- x!... != x!... + 1
>>> _x.eq(x)
False
"""
return self.fixes()[0]
def intros(self) -> smt.ExprRef | list[smt.ExprRef] | Goal:
"""
intros opens an implication. ?|- p -> q becomes p ?|- q
>>> p,q,r = smt.Bools("p q r")
>>> l = Lemma(smt.Implies(p, q))
>>> l.intros()
[p] ?|- q
>>> l = Lemma(smt.Not(q))
>>> l.intros()
[q] ?|- False
"""
goalctx = self.top_goal()
goal = goalctx.goal
ctx = goalctx.ctx
if isinstance(goal, smt.QuantifierRef) and goal.is_forall():
return self.fixes()
self.goals.pop()
if smt.is_implies(goal):
self.goals.append(
goalctx._replace(ctx=ctx + [goal.arg(0)], goal=goal.arg(1))
)
return self.top_goal()
elif smt.is_not(goal):
self.goals.append(
goalctx._replace(ctx=ctx + [goal.arg(0)], goal=smt.BoolVal(False))
)
return self.top_goal()
elif (
smt.is_or(goal) and smt.is_not(goal.arg(0))
): # if implies a -> b gets classically unwound to Or(Not(a), b). TODO: Maybe I should remove this
if goal.num_args() == 2:
self.goals.append(
goalctx._replace(ctx=ctx + [goal.arg(0).arg(0)], goal=goal.arg(1))
)
else:
self.goals.append(
goalctx._replace(
ctx=ctx + [goal.arg(0).arg(0)], goal=smt.Or(goal.children()[1:])
)
)
return self.top_goal()
else:
raise ValueError("Intros failed.")
def simp(self, at=None):
"""
Use built in z3 simplifier. May be useful for boolean, arithmetic, lambda, and array simplifications.
>>> x,y = smt.Ints("x y")
>>> l = Lemma(x + y == y + x)
>>> l.simp()
[] ?|- True
>>> l = Lemma(x == 3 + y + 7)
>>> l.simp()
[] ?|- x == 10 + y
>>> l = Lemma(smt.Lambda([x], x + 1)[3] == y)
>>> l.simp()
[] ?|- 4 == y
"""
goalctx = self.top_goal()
if at is None:
oldgoal = goalctx.goal
newgoal = smt.simplify(oldgoal)
if newgoal.eq(oldgoal):
raise ValueError("Simplify failed. Goal is already simplified.")
self.lemmas.append(kd.kernel.prove(oldgoal == newgoal))
self.goals[-1] = goalctx._replace(goal=newgoal)
else:
oldctx = goalctx.ctx
old = oldctx[at]
new = smt.simplify(old)
if new.eq(old):
raise ValueError("Simplify failed. Ctx is already simplified.")
self.lemmas.append(kd.kernel.prove(old == new))
self.goals[-1] = goalctx._replace(
ctx=oldctx[:at] + [new] + oldctx[at + 1 :]
)
return self.top_goal()
def cases(self, t):
"""
`cases` let's us consider an object by cases.
We consider whether Bools are True or False
We consider the different constructors for datatypes
>>> import kdrag.theories.nat as nat
>>> x = smt.Const("x", nat.Nat)
>>> l = Lemma(smt.BoolVal(True))
>>> l.cases(x)
[is(Z, x) == True] ?|- True
>>> l.auto() # next case
[is(S, x) == True] ?|- True
"""
goalctx = self.top_goal()
ctx = goalctx.ctx
goal = goalctx.goal
if t.sort() == smt.BoolSort():
self.goals.pop()
self.goals.append(
goalctx._replace(ctx=ctx + [t == smt.BoolVal(True)], goal=goal)
)
self.goals.append(
goalctx._replace(ctx=ctx + [t == smt.BoolVal(False)], goal=goal)
)
elif isinstance(t, smt.DatatypeRef):
self.goals.pop()
dsort = t.sort()
for i in reversed(range(dsort.num_constructors())):
self.goals.append(
goalctx._replace(
ctx=ctx + [dsort.recognizer(i)(t) == smt.BoolVal(True)],
goal=goal,
)
)
else:
raise ValueError("Cases failed. Not a bool or datatype")
return self.top_goal()
def auto(self, **kwargs):
"""
`auto` discharges a goal using z3. It forwards all parameters to `kd.prove`
"""
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
self.lemmas.append(kd.kernel.prove(smt.Implies(smt.And(ctx), goal), **kwargs))
self.goals.pop()
return self.top_goal()
def einstan(self, n):
"""
einstan opens an exists quantifier in context and returns the fresh eigenvariable.
`[exists x, p(x)] ?|- goal` becomes `p(x) ?|- goal`
"""
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
formula = ctx[n]
if isinstance(formula, smt.QuantifierRef) and formula.is_exists():
self.goals.pop()
fs, einstan_lemma = kd.kernel.einstan(formula)
self.lemmas.append(einstan_lemma)
self.goals.append(
goalctx._replace(
sig=goalctx.sig + fs,
ctx=ctx[:n] + [einstan_lemma.thm.arg(1)] + ctx[n + 1 :],
goal=goal,
)
)
if len(fs) == 1:
return fs[0]
else:
return fs
else:
raise ValueError("Einstan failed. Not an exists")
def instan(self, n, *ts):
"""
Instantiate a universal quantifier in the context.
>>> x,y = smt.Ints("x y")
>>> l = Lemma(smt.Implies(smt.ForAll([x],x == y), True))
>>> l.intros()
[ForAll(x, x == y)] ?|- True
>>> l.instan(0, smt.IntVal(42))
[ForAll(x, x == y), 42 == y] ?|- True
"""
goalctx = self.goals[-1]
thm = goalctx.ctx[n]
if isinstance(thm, smt.QuantifierRef) and thm.is_forall():
l = kd.kernel.instan2(ts, thm)
self.lemmas.append(l)
self.goals[-1] = goalctx._replace(ctx=goalctx.ctx + [l.thm.arg(1)])
return self.top_goal()
else:
raise ValueError("Instan failed. Not a forall", thm)
def ext(self):
"""
Apply extensionality to a goal
>>> x = smt.Int("x")
>>> l = Lemma(smt.Lambda([x], smt.IntVal(1)) == smt.K(smt.IntSort(), smt.IntVal(1)))
>>> _ = l.ext()
"""
goalctx = self.top_goal()
goal = goalctx.goal
if smt.is_eq(goal):
lhs, rhs = goal.arg(0), goal.arg(1)
if smt.is_array_sort(lhs):
self.goals.pop()
ext_ind = smt.Ext(lhs, rhs)
x = smt.FreshConst(ext_ind.sort())
newgoal = smt.Eq(lhs[x], rhs[x])
self.lemmas.append(
kd.kernel.prove(
smt.Implies(x == ext_ind, smt.Eq(lhs, rhs) == newgoal)
)
)
self.goals.append(
goalctx._replace(ctx=goalctx.ctx + [x == ext_ind], goal=newgoal)
)
return x
else:
raise ValueError("Ext failed. Goal is not an array equality", goal)
else:
raise ValueError("Ext failed. Goal is not an equality", goal)
def split(self, at=None):
"""
`split` breaks apart an `And` or bi-implication `==` goal.
The optional keyword at allows you to break apart an And or Or in the context
>>> p = smt.Bool("p")
>>> l = Lemma(smt.And(True,p))
>>> l.split()
[] ?|- True
>>> l.auto() # next goal
[] ?|- p
"""
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
if at is None:
if smt.is_and(goal):
self.goals.pop()
self.goals.extend(
[
goalctx._replace(ctx=ctx, goal=c)
for c in reversed(goal.children())
]
)
elif smt.is_eq(goal):
self.goals.pop()
self.goals.append(
goalctx._replace(
ctx=ctx, goal=smt.Implies(goal.arg(0), goal.arg(1))
)
)
self.goals.append(
goalctx._replace(
ctx=ctx, goal=smt.Implies(goal.arg(1), goal.arg(0))
)
)
elif smt.is_distinct(goal):
self.goals.pop()
for i in range(goal.num_args()):
for j in range(i):
self.goals.append(
goalctx._replace(
ctx=ctx + [smt.Eq(goal.arg(j), goal.arg(i))],
goal=smt.BoolVal(False),
)
)
else:
raise ValueError("Unexpected case in goal for split tactic", goal)
return self.top_goal()
else:
if smt.is_or(ctx[at]):
self.goals.pop()
for c in ctx[at].children():
self.goals.append(
goalctx._replace(ctx=ctx[:at] + [c] + ctx[at + 1 :], goal=goal)
)
if smt.is_and(ctx[at]):
self.goals.pop()
self.goals.append(
goalctx._replace(
ctx=ctx[:at] + ctx[at].children() + ctx[at + 1 :], goal=goal
)
)
else:
raise ValueError("Split failed")
return self.top_goal()
def left(self, n=0):
"""
Select the left case of an `Or` goal.
>>> p,q = smt.Bools("p q")
>>> l = Lemma(smt.Or(p,q))
>>> l.left()
[] ?|- p
"""
# TODO: consider adding Not(right) to context since we're classical?
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
if smt.is_or(goal):
if n is None:
n = 0
self.goals[-1] = goalctx._replace(ctx=ctx, goal=goal.arg(n))
return self.top_goal()
else:
raise ValueError("Left failed. Not an or")
def right(self):
"""
Select the right case of an `Or` goal.
>>> p,q = smt.Bools("p q")
>>> l = Lemma(smt.Or(p,q))
>>> l.right()
[] ?|- q
"""
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
if smt.is_or(goal):
self.goals[-1] = goalctx._replace(
ctx=ctx, goal=goal.arg(goal.num_args() - 1)
)
return self.top_goal()
else:
raise ValueError("Right failed. Not an or")
def exists(self, *ts):
"""
Give terms `ts` to satisfy an exists goal
`?|- exists x, p(x)` becomes `?|- p(ts)`
>>> x,y = smt.Ints("x y")
>>> Lemma(smt.Exists([x], x == y)).exists(y)
[] ?|- y == y
"""
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
assert isinstance(goal, smt.QuantifierRef) and goal.is_exists()
lemma = kd.kernel.forget2(ts, goal)
self.lemmas.append(lemma)
self.goals[-1] = goalctx._replace(ctx=ctx, goal=lemma.thm.arg(0))
return self.top_goal()
def rewrite(self, rule: kd.kernel.Proof | int, at=None, rev=False):
"""
`rewrite` allows you to apply rewrite rule (which may either be a Proof or an index into the context) to the goal or to the context.
"""
goalctx = self.goals[-1]
ctx, goal = goalctx.ctx, goalctx.goal
if isinstance(rule, int):
rulethm = ctx[rule]
elif kd.kernel.is_proof(rule):
rulethm = rule.thm
else:
raise ValueError(
"Rewrite tactic failed. Not a proof or context index", rule
)
if isinstance(rulethm, smt.QuantifierRef) and rulethm.is_forall():
vs, body = kd.utils.open_binder(rulethm)
else:
vs = []
body = rulethm
if smt.is_eq(body):
lhs, rhs = body.arg(0), body.arg(1)
if rev:
lhs, rhs = rhs, lhs
else:
raise ValueError(f"Rewrite tactic failed. Not an equality {rulethm}")
if at is None:
target = goal
elif isinstance(at, int):
target = ctx[at]
else:
raise ValueError(
"Rewrite tactic failed. `at` is not an index into the context"
)
subst = kd.utils.pmatch_rec(vs, lhs, target)
if subst is None:
raise ValueError(
f"Rewrite tactic failed to apply lemma {rulethm} to goal {goal}"
)
else:
self.goals.pop()
lhs1 = smt.substitute(lhs, *[(v, t) for v, t in subst.items()])
rhs1 = smt.substitute(rhs, *[(v, t) for v, t in subst.items()])
target: smt.BoolRef = smt.substitute(target, (lhs1, rhs1))
if isinstance(rulethm, smt.QuantifierRef) and rulethm.is_forall():
self.lemmas.append(kd.kernel.instan2([subst[v] for v in vs], rulethm))
if not isinstance(rule, int) and kd.kernel.is_proof(rule):
self.lemmas.append(rule)
if at is None:
self.goals.append(goalctx._replace(ctx=ctx, goal=target))
else:
if at == -1:
at = len(ctx) - 1
self.goals.append(
goalctx._replace(ctx=ctx[:at] + [target] + ctx[at + 1 :], goal=goal)
)
return self.top_goal()
def rw(self, rule: kd.kernel.Proof | int, at=None, rev=False):
"""
shorthand for rewrite
"""
return self.rewrite(rule, at=at, rev=rev)
def symm(self):
"""
Swap left and right hand side of equational goal
>>> x,y = smt.Ints("x y")
>>> Lemma(x == y).symm()
[] ?|- y == x
"""
ctxgoal = self.top_goal()
if smt.is_eq(ctxgoal.goal):
self.goals[-1] = ctxgoal._replace(
goal=smt.Eq(ctxgoal.goal.arg(1), ctxgoal.goal.arg(0))
)
return self.top_goal()
else:
raise ValueError("Symm tactic failed. Not an equality", ctxgoal.goal)
def eq(self, rhs: smt.ExprRef, **kwargs):
"""replace rhs in equational goal"""
# TODO: consider allow `by` keyword to reference context`
ctxgoal = self.top_goal()
if smt.is_eq(ctxgoal.goal):
self.lemmas.append(
kd.kernel.prove(
smt.Implies(smt.And(ctxgoal.ctx), ctxgoal.goal.arg(1) == rhs),
**kwargs,
)
)
self.goals[-1] = ctxgoal._replace(goal=smt.Eq(ctxgoal.goal.arg(0), rhs))
return self.top_goal()
else:
raise ValueError("Eq tactic failed. Not an equality", ctxgoal.goal)
def newgoal(self, newgoal: smt.BoolRef, **kwargs):
"""
Try to show newgoal is sufficient to prove current goal
"""
goalctx = self.top_goal()
self.lemmas.append(
kd.prove(
smt.Implies(smt.And(goalctx.ctx + [newgoal]), goalctx.goal), **kwargs
)
)
self.goals[-1] = goalctx._replace(goal=newgoal)
return self.top_goal()
def unfold(self, *decls: smt.FuncDeclRef, at=None):
"""
Unfold all definitions once. If declarations are given, only those are unfolded.
>>> import kdrag.theories.nat as nat
>>> l = Lemma(nat.Z + nat.Z == nat.Z)
>>> l
[] ?|- add(Z, Z) == Z
>>> l.unfold(nat.double) # does not unfold add
[] ?|- add(Z, Z) == Z
>>> l.unfold()
[] ?|- If(is(Z, Z), Z, S(add(pred(Z), Z))) == Z
"""
goalctx = self.top_goal()
decls1 = None if len(decls) == 0 else decls
if at is None:
e = goalctx.goal
e2 = kd.rewrite.unfold(e, decls=decls1, trace=self.lemmas)
self.goals.pop()
self.goals.append(goalctx._replace(goal=e2))
else:
e = goalctx.ctx[at]
e2 = kd.rewrite.unfold(e, decls=decls, trace=self.lemmas)
self.goals.pop()
if at == -1:
at = len(goalctx.ctx) - 1
self.goals.append(
goalctx._replace(ctx=goalctx.ctx[:at] + [e2] + goalctx.ctx[at + 1 :])
)
return self.top_goal()
def apply(self, pf: kd.kernel.Proof, rev=False):
"""
`apply` matches the conclusion of a proven clause
"""
goalctx = self.goals.pop()
ctx, goal = goalctx.ctx, goalctx.goal
thm = pf.thm
if isinstance(thm, smt.QuantifierRef) and thm.is_forall():
vs, thm = kd.utils.open_binder(thm)
else:
vs = []
if smt.is_implies(thm):
pat = thm.arg(1)
elif smt.is_eq(thm):
if rev:
pat = thm.arg(1)
else:
pat = thm.arg(0)
else:
pat = thm
subst = kd.utils.pmatch(vs, pat, goal)
if subst is None:
raise ValueError(f"Apply tactic failed to apply lemma {pf} to goal {goal} ")
else:
if len(vs) > 0:
pf1 = kd.kernel.instan([subst[v] for v in vs], pf)
self.lemmas.append(pf1)
else:
pf1 = pf
if smt.is_implies(pf1.thm):
self.goals.append(goalctx._replace(ctx=ctx, goal=pf1.thm.arg(0)))
elif smt.is_eq(pf1.thm):
if rev:
self.goals.append(goalctx._replace(ctx=ctx, goal=pf1.thm.arg(0)))
else:
self.goals.append(goalctx._replace(ctx=ctx, goal=pf1.thm.arg(1)))
return self.top_goal()
def induct(
self,
x: smt.ExprRef,
using: Optional[
Callable[
[smt.ExprRef, Callable[[smt.ExprRef, smt.BoolRef], smt.BoolRef]],
kd.kernel.Proof,
]
] = None,
):
"""
Apply an induction lemma instantiated on x.
"""
goal = self.top_goal().goal
if using is None:
indlem = x.induct(smt.Lambda([x], goal))
else:
indlem = using(x, smt.Lambda([x], goal))
self.lemmas.append(indlem)
self.apply(indlem)
if smt.is_and(self.top_goal().goal):
# self.split()
goalctx = self.goals.pop()
self.goals.extend(
[goalctx._replace(goal=c) for c in reversed(goalctx.goal.children())]
)
return self.top_goal()
def clear(self, n: int):
"""
Remove a hypothesis from the context
"""
ctxgoal = self.goals[-1]
ctxgoal.ctx.pop(n)
return self.top_goal()
def generalize(self, *vs: smt.ExprRef):
"""
Put variables forall quantified back on goal. Useful for strengthening induction hypotheses.
"""
goalctx = self.goals.pop()
self.lemmas.append(kd.kernel.instan2(vs, smt.ForAll(vs, goalctx.goal)))
self.goals.append(goalctx._replace(goal=smt.ForAll(vs, goalctx.goal)))
return self.top_goal()
def show(self, thm: smt.BoolRef):
"""
To document the current goal
"""
goal = self.top_goal().goal
if not thm.eq(goal):
raise ValueError("Goal does not match", thm, goal)
return self.top_goal()
def assumption(self):
"""
Exact match of goal in the context
"""
goalctx = self.goals.pop()
goal, ctx = goalctx.goal, goalctx.ctx
if any([goal.eq(h) for h in ctx]):
return self.top_goal()
else:
raise ValueError("Assumption tactic failed", goal, ctx)
def have(self, conc: smt.BoolRef, **kwargs):
"""
Prove the given formula and add it to the current context
"""
goalctx = self.goals.pop()
self.lemmas.append(
kd.kernel.prove(smt.Implies(smt.And(goalctx.ctx), conc), **kwargs)
)
self.goals.append(goalctx._replace(ctx=goalctx.ctx + [conc]))
return self.top_goal()
def admit(self) -> Goal:
"""
admit the current goal without proof. Don't feel bad about keeping yourself moving, but be aware that you're not done.
>>> l = Lemma(smt.BoolVal(False)) # a false goal
>>> _ = l.admit()
>>> l.qed()
|- False
"""
goalctx = self.goals.pop()
self.lemmas.append(kd.kernel.prove(goalctx.goal, admit=True))
return self.top_goal()
# TODO
# def search():
# def suggest():
# def llm():
# def calc
def top_goal(self) -> Goal:
if len(self.goals) == 0:
return Goal.empty() # kind of hacky
return self.goals[-1]
def __repr__(self):
if len(self.goals) == 0:
return "Nothing to do. Hooray!"
return repr(self.top_goal())
def qed(self, **kwargs) -> kd.kernel.Proof:
"""
return the actual final `Proof` of the lemma that was defined at the beginning.
"""
if "by" in kwargs:
kwargs["by"].extend(self.lemmas)
else:
kwargs["by"] = self.lemmas
return kd.kernel.prove(self.thm, **kwargs)