One nice thing about Knuckledragger https://github.com/philzook58/knuckledragger is that I have built a raft of little functionality such that now I can rip out cute little examples.

The main thing that I have ready to go here is an implementation of unification. https://www.philipzucker.com/unify/ https://www.philipzucker.com/ho_unify/ That combined with term orderings are the main annoying fiddly things you need to build little versions of many automated reasoning algorithms.

Prolog is many things. It is a particular strategy on resolution. https://en.wikipedia.org/wiki/SLD_resolution . You can look at it as just an imperative thing that kind of makes sense. It is also basically backwards proof search https://arxiv.org/abs/2304.13430 https://sites.google.com/site/proghol/ https://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/14-prolog.html . It is also basically what you get when you combine backtracking/search + unification. You can take this separately if you like an get interesting stuff too.

My interpreter starts with a set of goals (implicitly conjoined) that you want to solve and a list of vs to consider to be unification variables. I have been using the style of explicitly maintaining which constants I consider variables. I could use z3’s de bruijn Var, but this wouldn’t work right in higher order situations.

The big state of the interpreter is a list of branch states. The outer list represents possible backtrackings you may need to try. The inner list is the thing closer to a normal stack and state in another language. The “stack” is a list of goals you still need to discharge in order to succeed. This goal stack is also basically a continuation data structure https://en.wikipedia.org/wiki/Continuation . The “state” is the current substitution and unbound variables list in this branch. That logic programming has these two stack structures is what makes it confusing sometimes when comparing against non logic programming interpreters. I have implemented this is a super brute force inefficient way. The goals share a lot of substructure, so we could factor together these two lists into a single structure. But then we also need to rip apart substitutions. Eh.

The interpreter loop is:

  • We pop the current goals of the todos
  • break down the top goal if we can
  • Otherwise try to apply each rule in our ruleset

You apply a rule by unifying it’s head with the current goal. That changes the current substitution.

import kdrag.smt as smt
import kdrag.rewrite as rw
import kdrag as kd
from typing import Sequence

def prolog(
    vs0: list[smt.ExprRef],
    goals: list[smt.BoolRef],
    rules0: Sequence[rw.Rule | smt.QuantifierRef | smt.BoolRef],
):
    """
    A small prolog interpreter. This is a generator of solutions consisting of variable list, substitution pairs.
    """
    rules = [
        rule if isinstance(rule, rw.Rule) else rw.rule_of_expr(rule) # rule_of_expr converts formulas in horn clause for to Rule tuples.
        for rule in reversed(rules0) # reversed because we will push on this list in order and I want to apply the first rules first.
    ]
    todo = [(vs0, goals, {})] # initial empty substitution
    while todo:
        vs, goals, subst = todo.pop()
        if len(goals) == 0: # nothing more to do on this branch. Success!
            yield vs, {k: t for k, t in subst.items() if any(k.eq(v) for v in vs0)}
            continue
        else:
            goal = goals.pop()
            # goal breakdown. R-sequent rules
            if smt.is_true(goal): # trivial
                todo.append((vs, goals, subst))
            elif smt.is_false(goal): # failure
                continue
            elif smt.is_and(goal): # break down into it's pieces and put on goals
                goals.extend(reversed(goal.children()))
                todo.append((vs, goals, subst))
            elif smt.is_or(goal):  # two different branches to try.
                for child in goal.children():
                    newgoals = goals + [child]
                    todo.append((vs, newgoals, subst))
            else:
                for rule in rules: # try each rule. Doing this eagerly is bit odd, but simple.
                    rule = rule.freshen()  # freshen the vars in the rule. inefficient.
                    vs1 = vs + rule.vs
                    subst1 = kd.utils.unify(vs1, rule.conc, goal)
                    if subst1 is None: # did not unify
                        continue
                    else:
                        newgoals = goals + [smt.substitute(rule.hyp, *subst1.items())]
                        newsubst = {
                            **{
                                k: smt.substitute(v, *subst1.items())
                                for k, v in subst.items()
                            },
                            **subst1,
                        } # substitution composition
                        newvs = list(set(vs1) - set(subst1.keys()))
                        todo.append((newvs, newgoals, newsubst))

import kdrag.theories.nat as nat
x,y,z = smt.Consts("x y z", nat.Nat)
plus = smt.Function("plus", nat.Nat, nat.Nat, nat.Nat, smt.BoolSort())
rules = [
    kd.QForAll([y], plus(nat.Z, y, y)),
    kd.QForAll([x,y,z], smt.Implies(
            plus(x, y, z),
            plus(nat.S(x), y, nat.S(z))
        ))]
list(prolog([x,y], [plus(x, y, nat.S(nat.Z))], rules))
[([], {y: S(Z), x: Z}), ([], {x: S(Z), y: Z})]
list(prolog([x,y], [plus(x, y, nat.S(nat.Z))], rules))

[([], {y: S(Z), x: Z}), ([], {x: S(Z), y: Z})]
import itertools
list(itertools.islice(prolog([x,y,z], [plus(x, y, nat.S(z))], rules), 4))
[([z], {y: S(z), x: Z}),
 ([y], {x: S(Z), z: y}),
 ([y], {x: S(S(Z)), z: S(y)}),
 ([y], {x: S(S(S(Z))), z: S(S(y))})]

Bits and Bobbles

I put the code of this post here https://github.com/philzook58/knuckledragger/blob/main/kdrag/solvers/prolog.py

Instead of using a todo stack, could use a todo FIFO, random pick, some kind of monte carlo tree search, who knows.

Other things to do.

  • implement smt.is_eq as unfication
  • callcc / delimitted continuations? Reflect the goal stack into the system
  • tabling could be fun. store alpha invariant forms
  • lambda prolog. see below. Need to track what fresh constants can end up in which unification variables somehow. There are different approaches. This enables exists and forall in goals and lambda terms in terms. We’d also want a local program clause context for contextual clauses brought in by goal implication.
  • nominal prolog
  • head and first symbol optimization. The rules can be indexed into a db by at least the funcdecl of the head.
  • call/n.
  • Make it less goddamn inefficient. I am copying way way to much. Also cache the various z3 ast calls. ctypes overhead is killer.
  • Add constraints. Since I’m on the z3 ast, should be easy. just mark some goals/predicates as constraints and add a constraint store (list) to the state. (vs, goals, subst, constrs)
  • attributed variables?
  • ASP / scasp there’s a challenge
  • coinductive lp https://personal.utdallas.edu/~gupta/iclp07paper.pdf
  • could add IO
a = smt.DeclareTypeVar("a")
print = smt.Function("print", a, smt.BoolSort())
if goal.decl().name() == "print":
    print(goal.arg(0))

z3 itself offers some horn clause modes. Space, a bounded model checking mode. https://microsoft.github.io/z3guide/docs/fixedpoints/intro/ https://theory.stanford.edu/~nikolaj/nus.html#/sec-horn-clause-engines You can also use define-fun-rec + proof/trace objects to embed a minikanren inside of z3 https://www.philipzucker.com/minikanren_inside_z3/

Real prologs include SWI https://www.swi-prolog.org/ , scryer https://github.com/mthom/scryer-prolog , trealla https://github.com/trealla-prolog/trealla , sicstus

Of course check out minikanren https://minikanren.org/ Minikanren sort of swaps around which branch to do next.

More on prolog: https://www.metalevel.at/prolog power of prolog, Clocksin and Mellish, Ivan Bratko book.

https://www.philipzucker.com/minikanren-z3py/ The spiel here is that I avoided writing my own unification by abusing z3 instead. Non unifiable branches are certainly unsat.

https://www.cl.cam.ac.uk/~jrh13/atp/OCaml/prolog.ml Harrison toy prolog

https://github.com/a-yiorgos/wambook Warren Abstract Machine a tutorial introduction. More serious

a python interpreter

https://curiosity-driven.org/prolog-interpreter

Prolog and es6 generators https://curiosity-driven.org/prolog-interpreter

https://news.ycombinator.com/item?id=2152570

https://cs.stackexchange.com/questions/6618/how-to-implement-a-prolog-interpreter-in-a-purely-functional-language

andrej bauer’s pl zoo prolog

1985 pascal design and implementation of prolog interpreter

a lark parser

import kdrag as kd
import kdrag.smt as smt
import lark
import kdrag.rewrite as rw
from typing import Sequence
import sys

grammar = r"""
    start: _statement*

    _statement: fact
             | rule
             | query

    fact: predicate "."
    rule: predicate ":-" predicate_list "."
    query: "?-" predicate_list "."

    predicate_list: predicate ("," predicate)* // inlined

    predicate: IDENTIFIER "(" term_list? ")"
    term_list: term ("," term)* // inlined

    term: IDENTIFIER    -> const          // constants or functors
        | VARIABLE      -> var          // variables
        | IDENTIFIER "(" term_list ")" -> fun_app  // recursive terms (e.g., s(X))

    VARIABLE: /[A-Z][A-Za-z0-9_]*/  // Variables start with uppercase
    IDENTIFIER: /[a-z][A-Za-z0-9_]*/  // Constants and function names start with lowercase

    %import common.WS
    %ignore WS
"""

Term = smt.DeclareSort("Term")


def interp_term(t: lark.Tree) -> smt.ExprRef:
    token = t.data
    if token == "const":
        return smt.Const(t.children[0], Term)
    elif token == "var":
        return smt.Const(t.children[0], Term)
    elif token == "fun_app":
        args = t.children[1].children
        sortlist = [Term] * (len(args) + 1)
        f = smt.Function(t.children[0], *sortlist)
        return f(*[interp_term(a) for a in args])
    else:
        raise ValueError(f"Unexpected term {t}")


def interp_pred(t: lark.Tree) -> smt.BoolRef:
    assert t.data == "predicate"
    name = t.children[0]
    args = [interp_term(a) for a in t.children[1].children]
    return smt.Function(name, *([Term] * len(args)), smt.BoolSort())(*args)


def get_vars(e: smt.ExprRef) -> list[smt.ExprRef]:
    todo = [e]
    res = set()
    while todo:
        e = todo.pop()
        if smt.is_const(e) and e.decl().name()[0].isupper():
            res.add(e)
        elif smt.is_app(e):
            todo.extend(e.children())
        else:
            raise ValueError(f"Unexpected expression {e}")
    return list(res)


def interp(
    t: lark.Tree,
) -> tuple[
    list[smt.BoolRef | smt.QuantifierRef],
    list[tuple[list[smt.ExprRef], list[smt.BoolRef]]],
]:
    assert t.data == "start"
    clauses = []
    queries = []
    for stmt in t.children:
        if stmt.data == "fact":
            e = interp_pred(stmt.children[0])
            vs = get_vars(e)
            if len(vs) == 0:
                clauses.append(interp_pred(stmt.children[0]))
            else:
                clauses.append(smt.ForAll(vs, e))
        elif stmt.data == "rule":
            head = interp_pred(stmt.children[0])
            predlist = stmt.children[1]
            assert predlist.data == "predicate_list"
            body = [interp_pred(p) for p in stmt.children[1].children]
            vs = list(set(get_vars(head)) | set().union(*(get_vars(p) for p in body)))
            if len(vs) == 0:
                clauses.append(smt.Implies(smt.And(*body), head))
            else:
                clauses.append(kd.QForAll(vs, smt.And(*body), head))
        elif stmt.data == "query":
            goals = [interp_pred(p) for p in stmt.children[0].children]
            vs = list(set().union(*(get_vars(g) for g in goals)))
            queries.append((vs, goals))
        else:
            raise ValueError(f"Unexpected statement {stmt}")
    return clauses, queries


parser = lark.Lark(grammar, start="start", parser="lalr")

def run_string(s: str):
    """
    Run a Prolog-like string and return the results.

    >>> run_string("plus(z, Y, Y). plus(s(X), Y, s(Z)) :- plus(X, Y, Z). ?- plus(X, Y, s(z)).")
    [([], {Y: s(z), X: z}), ([], {X: s(z), Y: z})]
    """
    tree = parser.parse(s)
    clauses, queries = interp(tree)
    for vs, goals in queries:
        if len(goals) == 0:
            continue
        return list(prolog(vs, goals, clauses))


if __name__ == "__main__":
    with open(sys.argv[1]) as f:
        print(run_string(f.read()))

The code of Rule

Maybe you need to see this to follow the above interpreter


class Rule(NamedTuple):
    vs: list[smt.ExprRef]
    hyp: smt.BoolRef
    conc: smt.BoolRef
    pf: Optional[kd.kernel.Proof] = None

    def freshen(self):
        """Freshen the rule by renaming variables.

        >>> x,y= smt.Reals("x y")
        >>> rule = Rule([x], x > 0, x < 0)
        >>> rule.freshen()
        Rule(vs=[x...], hyp=x... > 0, conc=x... < 0, pf=None)
        """
        vs1 = [
            smt.FreshConst(v.sort(), prefix=v.decl().name().split("!")[0])
            for v in self.vs
        ]
        return Rule(
            vs1,
            hyp=smt.substitute(self.hyp, *zip(self.vs, vs1)),
            conc=smt.substitute(self.conc, *zip(self.vs, vs1)),
            pf=self.pf,
        )

    def to_expr(self) -> smt.ExprRef | smt.QuantifierRef:
        """Convert the rule to a theorem of form `forall vs, hyp => conc`.

        >>> x = smt.Real("x")
        >>> Rule([x], x > 0, x < 0).to_expr()
        ForAll(x..., Implies(x... > 0, x... < 0))
        """
        if len(self.vs) == 0:
            return smt.Implies(self.hyp, self.conc)
        else:
            return smt.ForAll(self.vs, smt.Implies(self.hyp, self.conc))


def rule_of_expr(pf_or_thm: smt.ExprRef | kd.kernel.Proof) -> Rule:
    """Unpack theorem of form `forall vs, body => head` into a Rule tuple

    >>> x = smt.Real("x")
    >>> rule_of_expr(smt.ForAll([x], smt.Implies(x**2 == x*x, x > 0)))
    Rule(vs=[X...], hyp=X...**2 == X...*X..., conc=X... > 0, pf=None)
    >>> rule_of_expr(x > 0)
    Rule(vs=[], hyp=True, conc=x > 0, pf=None)
    """
    if isinstance(pf_or_thm, smt.ExprRef):
        thm = pf_or_thm
        pf = None
    elif kd.kernel.is_proof(pf_or_thm):
        pf = pf_or_thm
        thm = pf.thm
    else:
        raise ValueError("Expected proof or theorem")
    if isinstance(thm, smt.QuantifierRef) and thm.is_forall():
        vs, thm = utils.open_binder(thm)
    else:
        vs = []
    if smt.is_implies(thm):
        return Rule(vs, hyp=thm.arg(0), conc=thm.arg(1), pf=pf)
    else:
        assert isinstance(thm, smt.BoolRef)
        return Rule(vs, hyp=smt.BoolVal(True), conc=thm, pf=pf)

Lambda prolog

Could push no escape check until later.

Oh. Maybe I never did or never lifted HO unify out of the blog post?

import kdrag.smt as smt
import kdrag.rewrite as rw
import kdrag as kd
from typing import Sequence

def lamprolog(
    vs0: list[smt.ExprRef],
    goals: list[smt.BoolRef],
    rules0: Sequence[rw.Rule | smt.QuantifierRef | smt.BoolRef],
):
    rules = [
        rule if isinstance(rule, rw.Rule) else rw.rule_of_expr(rule) # rule_of_expr converts formulas in horn clause for to Rule tuples.
        for rule in reversed(rules0) # reversed because we will push on this list in order and I want to apply the first rules first.
    ]
    todo = [({v : [] for v in vs0}, [], goals, {})] # initial empty substitution
    while todo:
        vs, sig, goals, subst = todo.pop()
        if len(goals) == 0: # nothing more to do on this branch. Success!
            yield vs, {k: t for k, t in subst.items() if any(k.eq(v) for v in vs0.keys())}
            continue
        else:
            goal = goals.pop()
            # goal breakdown. R-sequent rules
            if smt.is_true(goal): # trivial
                todo.append((vs, goals, subst))
            elif smt.is_false(goal): # failure
                continue
            elif smt.is_and(goal): # break down into it's pieces and put on goals
                goals.extend(reversed(goal.children()))
                todo.append((vs, goals, subst))
            elif smt.is_or(goal):  # two different branches to try.
                for child in goal.children():
                    newgoals = goals + [child]
                    todo.append((vs, newgoals, subst))
            elif smt.is_eq(goal):
                subst1 = kd.unify(vs, goal.arg(0), goal.arg(1))  # try to unify the two sides.
                if subst1 is None:  # did not unify
                    continue
                else:
                    # apply the substitution
                    newsubst = {
                        **{
                            k: smt.substitute(v, *subst1.items())
                            for k, v in subst.items()
                        },
                        **subst1,
                    }
                    newvs = {**vs}
                    for v in subst1.keys():
                        if v in newvs:
                            del newvs[v]
                    todo.append((newvs, goals, newsubst))
            elif isinstance(goal, smt.QuantifierRef):
                if goal.is_exists():
                    vs1, body = kd.utils.open_binder(goal)
                    todo.append((vs + vs1, goals + [body], subst))
                elif goal.is_forall():
                    vs1, body = kd.utils.open_binder(goal)
                    todo.append(({v : bs + vs1 for v,bs in vs.items()}, sig + vs1, goals + [body], subst))
            else:
                for rule in rules: # try each rule. Doing this eagerly is bit odd, but simple.
                    rule = rule.freshen()  
                    vs1 = vs + rule.vs
                    # could do L sequent rules here

                    subst1 = kd.utils.unify(vs1, rule.conc, goal)
                    if subst1 is None: # did not unify
                        continue
                    else:
                        # escape check
                        if any(kd.utils.occurs(b, t) for v,t in subst1.items() for b in vs[v]):
                            continue
                        else:
                            newgoals = goals + [smt.substitute(rule.hyp, *subst1.items())]
                            newsubst = {
                                **{
                                    k: smt.substitute(v, *subst1.items())
                                    for k, v in subst.items()
                                },
                                **subst1,
                            }
                            newvs = {**vs}
                            for v in subst1.keys():
                                del newvs[v]
                            todo.append((newvs, newgoals, newsubst))

narrowing

Narrowing is rewriting where you use unification instead of pattern matching. I already implemented narrowing basically in my knuth bendix post.

Needed narrowing might be better. The started of an e-unifier?

from kdrag.all import *
import kdrag.rewrite as rw

#def ground(vs, t): / is_value?
# 


# could do a rewriting
#  search similarly you know.
def flp(vs, t, rules):
    rules = [
        rule if isinstance(rule, rw.RewriteRule) else rw.rewrite_of_expr(rule)
        for rule in rules
    ]
    subst = {}
    todo = [(vs, t, subst)] # could have mutiple t?
    while todo:
        vs,t,subst = todo.pop()
        progress = False
        for rule in rules:
            rule = rule.freshen()
            narrows = rw.all_narrows(vs + rule.vs, t, rule.lhs, rule.rhs)
            if len(narrows) != 0: # no. I don't want this just because 
                progress = True
            for t1, subst1 in rw.all_narrows(vs, t, rule.lhs, rule.rhs):
                # combine subst and subst1
                # reduce vs maybe
                # maybe yield here if reach some condition
                todo.append((vs, t1, subst | subst1))
        if not progress:
            yield vs, t, subst

import kdrag.theories.nat as nat
rules = [
    nat.add_zero,
    nat.add_succ,
]