Quantum Harmonic Oscillator Algebra in Sympy
This is kind of garbage, but it does work.
from sympy import *
a = Symbol('a', commutative=False)
adag = Symbol('adag', commutative=False)
ket = Symbol('|0>', commutative=False)
bra = Symbol('<0|', commutative=False)
expr = bra * a * a * a * adag * adag * adag * ket
print expr
rules = [(a * adag, adag * a + 1), (a * ket, 0), (bra*adag, 0), (bra * ket, 1)]
expr22 = expr.subs(rules).expand()
for i in range(10):
expr22 = expr22.expand()
expr22 = expr22.subs(rules)
print expr22
Need to loop over it because the substitution rules aren’t smart enough to distribute the commutators themselves.
Still, seems to work. Kind of a hack, but seems to work.
Here’s the same thing built out of not much. Not elegantly done particularly
def evalexpr(expr):
if expr == []:
return 1
if expr[-1]=='a':
return 0
elif expr[0]=='adag':
return 0
else:
for i in range(len(expr)-1):
if expr[i]=='a' and expr[i+1]=='adag':
head = expr[0:i]
if i+2 < len(expr):
tail = expr[i+2:]
else:
tail = []
return evalexpr(head+tail) + evalexpr(head+['adag','a']+tail)
break
print evalexpr(['a','a','a', 'adag', 'adag','adag'])