kdrag.tactics
Tactics are helpers that organize calls to the kernel. The code of these helpers don’t have to be trusted.
Functions
|
Prove a theorem using a list of previously proved lemmas. |
|
Classes
|
Calc is for equational reasoning. |
|
|
|
Tactic class for interactive proofs |
- class kdrag.tactics.Calc(vars: list[ExprRef], lhs: ExprRef, assume=[])
Bases:
object
Calc is for equational reasoning. One can write a sequence of formulas interspersed with useful lemmas.
- eq(rhs, by=[], **kwargs)
- ge(rhs, by=[])
- gt(rhs, by=[])
- le(rhs, by=[])
- lt(rhs, by=[])
- qed(**kwargs)
- class kdrag.tactics.GoalCtx(ctx, goal)
Bases:
NamedTuple
- count(value, /)
Return number of occurrences of value.
- ctx: list[BoolRef]
Alias for field number 0
- goal: BoolRef
Alias for field number 1
- index(value, start=0, stop=9223372036854775807, /)
Return first index of value.
Raises ValueError if the value is not present.
- class kdrag.tactics.Lemma(goal: BoolRef)
Bases:
object
Tactic class for interactive proofs
- apply(pf: None, rev=False)
apply matches the conclusion of a proven clause
- assumption()
Exact match of goal in the context
- auto(**kwargs)
auto discharges a goal using z3. It forwards all parameters to kd.lemma
- cases(t)
cases let’s us consider an object by cases. We consider whether Bools are True or False We consider the different constructors for datatypes
- clear(n: int)
Remove a hypothesis from the context
- einstan(n)
einstan opens an exists quantifier in context and returns the fresh eigenvariable. [exists x, p(x)] ?|- goal becomes p(x) ?|- goal
- eq(rhs, **kwargs)
replace rhs in equational goal
- exists(*ts)
Give terms ts to satisfy an exists goal ?|- exists x, p(x) becomes ?|- p(ts) >>> x,y = smt.Ints(“x y”) >>> Lemma(smt.Exists([x], x == y)).exists(y) [] ?|- y == y
- fixes()
fixes opens a forall quantifier. ?|- forall x, p(x) becomes x ?|- p(x)
- generalize(*vs)
Put variables forall quantified back on goal. Useful for strengthening induction hypotheses.
- have(conc: BoolRef, **kwargs)
Prove the given formula and add it to the current context
- induct(x: ExprRef)
Apply an induction lemma instantiated on x.
- intros()
intros opens an implication. ?|- p -> q becomes p ?|- q
- left(n=0)
Select the left case of an Or goal. ?|- Or(p,q) becomes ?|- p
- newgoal(newgoal: BoolRef, **kwargs)
Try to show newgoal is sufficient to prove current goal
- qed() None
return the actual final Proof of the lemma that was defined at the beginning.
- rewrite(rule, at=None, rev=False)
rewrite allows you to apply rewrite rule (which may either be a Proof or an index into the context) to the goal or to the context.
- right()
Select the right case of an Or goal. ?|- Or(p,q) becomes ?|- q
- rw(rule, at=None, rev=False)
shorthand for rewrite
- show(thm: BoolRef)
To document the current goal
- simp()
- split(at=None)
split breaks apart an And or bi-implication == goal. The optional keyword at allows you to break apart an And or Or in the context
- unfold(*decls: FuncDeclRef, at=None)
Unfold the contents of a definition.
- kdrag.tactics.lemma(thm: BoolRef, by: None | list[None] = [], admit=False, timeout=1000, dump=False, solver=None, defns=True, simps={}) None
Prove a theorem using a list of previously proved lemmas.
In essence prove(Implies(by, thm)).
- Parameters:
thm (smt.BoolRef) – The theorem to prove.
thm – The theorem to prove.
by (list[Proof]) – A list of previously proved lemmas.
admit (bool) – If True, admit the theorem without proof.
- Returns:
A proof object of thm
- Return type:
Proof
>>> lemma(smt.BoolVal(True)) |- True
>>> lemma(smt.RealVal(1) >= smt.RealVal(0)) |- 1 >= 0
- kdrag.tactics.simp(t: ExprRef, by: list[None] = [], **kwargs) None
"""
Tactics are helpers that organize calls to the kernel. The code of these helpers don't have to be trusted.
"""
import kdrag as kd
import kdrag.smt as smt
from enum import IntEnum
import operator as op
from . import config
from typing import NamedTuple
class Calc:
"""
Calc is for equational reasoning.
One can write a sequence of formulas interspersed with useful lemmas.
"""
class _Mode(IntEnum):
EQ = 0
LE = 1
LT = 2
GT = 3
GE = 4
def __str__(self):
names = ["==", "<=", "<", ">", ">="]
return names[self]
@property
def op(self):
ops = [op.eq, op.le, op.lt, op.gt, op.ge]
return ops[self]
def trans(self, y):
"""Allowed transitions"""
if self == y or self == self.EQ:
return True
else:
if self == self.LE and y == self.LT or self == self.GE and y == self.GT:
return True
else:
return False
def __init__(self, vars: list[smt.ExprRef], lhs: smt.ExprRef, assume=[]):
self.vars = vars
self.lhs = lhs
self.iterm = lhs # intermediate term
self.assume = assume
self.lemma = kd.kernel.lemma(self._forall(lhs == lhs))
self.mode = self._Mode.EQ
def _forall(self, body):
if len(self.assume) == 1:
body = smt.Implies(self.assume[0], body)
elif len(self.assume) > 1:
body = smt.Implies(smt.And(self.assume), body)
if len(self.vars) == 0:
return body
else:
return smt.ForAll(self.vars, body)
def _lemma(self, rhs, by, **kwargs):
op = self.mode.op
l = kd.lemma(self._forall(op(self.iterm, rhs)), by=by, **kwargs)
self.lemma = kd.kernel.lemma(
self._forall(op(self.lhs, rhs)), by=[l, self.lemma], **kwargs
)
self.iterm = rhs
def eq(self, rhs, by=[], **kwargs):
self._lemma(rhs, by, **kwargs)
return self
def _set_mode(self, newmode):
if not self.mode.trans(newmode):
raise kd.kernel.LemmaError(
"Cannot change from", self.mode, "to", newmode, "in Calc"
)
self.mode = newmode
def le(self, rhs, by=[]):
self._set_mode(Calc._Mode.LE)
self._lemma(rhs, by)
return self
def lt(self, rhs, by=[]):
self._set_mode(Calc._Mode.LT)
self._lemma(rhs, by)
return self
def ge(self, rhs, by=[]):
self._set_mode(Calc._Mode.GE)
self._lemma(rhs, by)
return self
def gt(self, rhs, by=[]):
self._set_mode(Calc._Mode.GT)
self._lemma(rhs, by)
return self
def __repr__(self):
return "... " + str(self.mode) + " " + repr(self.terms[-1])
def qed(self, **kwargs):
return self.lemma
simps = {}
def lemma(
thm: smt.BoolRef,
by: kd.kernel.Proof | list[kd.kernel.Proof] = [],
admit=False,
timeout=1000,
dump=False,
solver=None,
defns=True,
simps=simps,
) -> kd.kernel.Proof:
"""Prove a theorem using a list of previously proved lemmas.
In essence `prove(Implies(by, thm))`.
:param thm: The theorem to prove.
Args:
thm (smt.BoolRef): The theorem to prove.
by (list[Proof]): A list of previously proved lemmas.
admit (bool): If True, admit the theorem without proof.
Returns:
Proof: A proof object of thm
>>> lemma(smt.BoolVal(True))
|- True
>>> lemma(smt.RealVal(1) >= smt.RealVal(0))
|- 1 >= 0
"""
if kd.kernel.is_proof(by):
by = [by]
if admit:
return kd.kernel.lemma(
thm, by, admit=admit, timeout=timeout, dump=dump, solver=solver
)
else:
if solver is None:
solver = config.solver
s = solver()
s.set("timeout", timeout)
for n, p in enumerate(by):
if not kd.kernel.is_proof(p):
raise kd.kernel.LemmaError("In by reasons:", p, "is not a Proof object")
s.assert_and_track(p.thm, "by_{}".format(n))
if len(by) == 0 and defns:
# TODO: consider pruning definitions to those in goal.
for v in kd.kernel.defns.values():
s.add(v.ax.thm)
for v in simps.values():
s.add(v)
s.assert_and_track(smt.Not(thm), "knuckledragger_goal")
if dump:
print(s.sexpr())
print(smt.solver)
if smt.solver == smt.Z3SOLVER:
"""
def log_instance(pr, clause, myst):
print(type(pr))
if pr.decl().name() == "inst":
q = pr.arg(0)
for ch in pr.children():
if ch.decl().name() == "bind":
print("Binding")
print(q)
print(ch.children())
break
onc = smt.OnClause(s, log_instance)
"""
onc = smt.OnClause(s, lambda pr, clause, myst: print(pr, clause, myst))
res = s.check()
if res != smt.unsat:
if res == smt.sat:
raise kd.kernel.LemmaError(thm, by, "Countermodel", s.model())
raise kd.kernel.LemmaError("lemma", thm, by, res)
else:
core = s.unsat_core()
if smt.Bool("knuckledragger_goal") not in core:
raise kd.kernel.LemmaError(
thm,
core,
"Inconsistent lemmas. Goal is not used for proof. Something has gone awry.",
)
if dump and len(core) < len(by) + 1:
print("WARNING: Unneeded assumptions. Used", core, thm)
return kd.kernel.lemma(
thm, by, admit=admit, timeout=timeout, dump=dump, solver=solver
)
def simp(t: smt.ExprRef, by: list[kd.kernel.Proof] = [], **kwargs) -> kd.kernel.Proof:
rules = [kd.utils.rule_of_theorem(lem.thm) for lem in by]
t1 = kd.utils.rewrite(t, rules)
return lemma(t == t1, by=by, **kwargs)
class GoalCtx(NamedTuple):
# TODO: also put eigenvariables, unification variables in here
ctx: list[smt.BoolRef]
goal: smt.BoolRef
def __repr__(self):
return repr(self.ctx) + " ?|- " + repr(self.goal)
class Lemma:
"""Tactic class for interactive proofs"""
def __init__(self, goal: smt.BoolRef):
self.lemmas = []
self.thm = goal
self.goals = [GoalCtx([], goal)]
def fixes(self):
"""fixes opens a forall quantifier. ?|- forall x, p(x) becomes x ?|- p(x)"""
ctx, goal = self.goals[-1]
if smt.is_quantifier(goal) and goal.is_forall():
self.goals.pop()
vs, herb_lemma = kd.kernel.herb(goal)
self.lemmas.append(herb_lemma)
self.goals.append(GoalCtx(ctx, herb_lemma.thm.arg(0)))
if len(vs) == 1:
return vs[0]
else:
return vs
else:
raise ValueError(f"fixes tactic failed. Not a forall {goal}")
def intros(self):
"""
intros opens an implication. ?|- p -> q becomes p ?|- q
"""
ctx, goal = self.goals[-1]
if smt.is_quantifier(goal) and goal.is_forall():
return self.fixes()
self.goals.pop()
if smt.is_implies(goal):
self.goals.append(GoalCtx(ctx + [goal.arg(0)], goal.arg(1)))
return self.top_goal()
elif smt.is_not(goal):
self.goals.append(GoalCtx(ctx + [goal.arg(0)], smt.BoolVal(False)))
return self.top_goal()
elif smt.is_or(goal) and smt.is_not(
goal.arg(0)
): # if implies a -> b gets classically unwound to Or(Not(a), b)
if goal.num_args() == 2:
self.goals.append(GoalCtx(ctx + [goal.arg(0).arg(0)], goal.arg(1)))
else:
self.goals.append(
GoalCtx(ctx + [goal.arg(0).arg(0)], smt.Or(goal.children[1:]))
)
return self.top_goal()
else:
raise ValueError("Intros failed.")
def simp(self):
oldgoal = self.goals[-1].goal
newgoal = smt.simplify(oldgoal)
if newgoal.eq(oldgoal):
raise ValueError("Simplify failed. Goal is already simplified.")
self.lemmas.append(kd.kernel.lemma(oldgoal == newgoal))
self.goals[-1] = self.goals[-1]._replace(goal=newgoal)
return self.top_goal()
def cases(self, t):
"""
`cases` let's us consider an object by cases.
We consider whether Bools are True or False
We consider the different constructors for datatypes
"""
ctx, goal = self.goals.pop()
if t.sort() == smt.BoolSort():
self.goals.append(GoalCtx(ctx + [t == smt.BoolVal(True)], goal))
self.goals.append(GoalCtx(ctx + [t == smt.BoolVal(False)], goal))
elif isinstance(t, smt.DatatypeRef):
dsort = t.sort()
for i in reversed(range(dsort.num_constructors())):
self.goals.append(
GoalCtx(ctx + [dsort.recognizer(i)(t) == smt.BoolVal(True)], goal)
)
else:
raise ValueError("Cases failed. Not a bool or datatype")
return self.top_goal()
def auto(self, **kwargs):
"""
`auto` discharges a goal using z3. It forwards all parameters to `kd.lemma`
"""
ctx, goal = self.goals[-1]
self.lemmas.append(lemma(smt.Implies(smt.And(ctx), goal), **kwargs))
self.goals.pop()
return self.top_goal()
def einstan(self, n):
"""
einstan opens an exists quantifier in context and returns the fresh eigenvariable.
`[exists x, p(x)] ?|- goal` becomes `p(x) ?|- goal`
"""
ctx, goal = self.goals[-1]
formula = ctx[n]
if smt.is_quantifier(formula) and formula.is_exists():
self.goals.pop()
fs, einstan_lemma = kd.kernel.einstan(formula)
self.lemmas.append(einstan_lemma)
self.goals.append(
GoalCtx(ctx[:n] + [einstan_lemma.thm.arg(1)] + ctx[n + 1 :], goal)
)
if len(fs) == 1:
return fs[0]
else:
return fs
else:
raise ValueError("Einstan failed. Not an exists")
def split(self, at=None):
"""
`split` breaks apart an `And` or bi-implication `==` goal.
The optional keyword at allows you to break apart an And or Or in the context
"""
ctx, goal = self.goals[-1]
if at is None:
if smt.is_and(goal):
self.goals.pop()
self.goals.extend([GoalCtx(ctx, c) for c in reversed(goal.children())])
elif smt.is_eq(goal):
self.goals.pop()
self.goals.append(GoalCtx(ctx, smt.Implies(goal.arg(0), goal.arg(1))))
self.goals.append(GoalCtx(ctx, smt.Implies(goal.arg(1), goal.arg(0))))
elif smt.is_distinct(goal):
self.goals.pop()
for i in range(goal.num_args()):
for j in range(i):
self.goals.append(
GoalCtx(
ctx + [smt.Eq(goal.arg(j), goal.arg(i))],
smt.BoolVal(False),
)
)
else:
raise ValueError("Unexpected case in goal for split tactic", goal)
return self.top_goal()
else:
if smt.is_or(ctx[at]):
self.goals.pop()
for c in ctx[at].children():
self.goals.append(GoalCtx(ctx[:at] + [c] + ctx[at + 1 :], goal))
if smt.is_and(ctx[at]):
self.goals.pop()
self.goals.append(
GoalCtx(ctx[:at] + ctx[at].children() + ctx[at + 1 :], goal)
)
else:
raise ValueError("Split failed")
return self.top_goal()
def left(self, n=0):
"""
Select the left case of an `Or` goal.
`?|- Or(p,q)` becomes `?|- p`
"""
# TODO: consider adding Not(right) to context since we're classical?
ctx, goal = self.goals[-1]
if smt.is_or(goal):
if n is None:
n = 0
self.goals[-1] = GoalCtx(ctx, goal.arg(n))
return self.top_goal()
else:
raise ValueError("Left failed. Not an or")
def right(self):
"""
Select the right case of an `Or` goal.
`?|- Or(p,q)` becomes `?|- q`
"""
ctx, goal = self.goals[-1]
if smt.is_or(goal):
self.goals[-1] = GoalCtx(ctx, goal.arg(goal.num_args() - 1))
return self.top_goal()
else:
raise ValueError("Right failed. Not an or")
def exists(self, *ts):
"""
Give terms `ts` to satisfy an exists goal
`?|- exists x, p(x)` becomes `?|- p(ts)`
>>> x,y = smt.Ints("x y")
>>> Lemma(smt.Exists([x], x == y)).exists(y)
[] ?|- y == y
"""
ctx, goal = self.goals[-1]
lemma = kd.kernel.forget2(ts, goal)
self.lemmas.append(lemma)
self.goals[-1] = GoalCtx(ctx, lemma.thm.arg(0))
return self.top_goal()
def rewrite(self, rule, at=None, rev=False):
"""
`rewrite` allows you to apply rewrite rule (which may either be a Proof or an index into the context) to the goal or to the context.
"""
ctx, goal = self.goals[-1]
if isinstance(rule, int):
rulethm = ctx[rule]
elif kd.kernel.is_proof(rule):
rulethm = rule.thm
if smt.is_quantifier(rulethm) and rulethm.is_forall():
vs, body = kd.utils.open_binder(rulethm)
else:
vs = []
body = rulethm
if smt.is_eq(body):
lhs, rhs = body.arg(0), body.arg(1)
if rev:
lhs, rhs = rhs, lhs
else:
raise ValueError(f"Rewrite tactic failed. Not an equality {rulethm}")
if at is None:
target = goal
elif isinstance(at, int):
target = ctx[at]
else:
raise ValueError(
"Rewrite tactic failed. `at` is not an index into the context"
)
subst = kd.utils.pmatch_rec(vs, lhs, target)
if subst is None:
raise ValueError(
f"Rewrite tactic failed to apply lemma {rulethm} to goal {goal}"
)
else:
self.goals.pop()
lhs1 = smt.substitute(lhs, *[(v, t) for v, t in subst.items()])
rhs1 = smt.substitute(rhs, *[(v, t) for v, t in subst.items()])
target: smt.BoolRef = smt.substitute(target, (lhs1, rhs1))
if smt.is_quantifier(rulethm) and rulethm.is_forall():
self.lemmas.append(kd.kernel.instan2([subst[v] for v in vs], rulethm))
if kd.kernel.is_proof(rule):
self.lemmas.append(rule)
if at is None:
self.goals.append(GoalCtx(ctx, target))
else:
self.goals.append(GoalCtx(ctx[:at] + [target] + ctx[at + 1 :], goal))
return self.top_goal()
def rw(self, rule, at=None, rev=False):
"""
shorthand for rewrite
"""
return self.rewrite(rule, at=at, rev=rev)
def eq(self, rhs, **kwargs):
"""replace rhs in equational goal"""
ctxgoal = self.top_goal()
if smt.is_eq(ctxgoal.goal):
self.lemmas.append(kd.kernel.lemma(ctxgoal.goal.arg(1) == rhs, **kwargs))
self.goals[-1] = ctxgoal._replace(goal=smt.Eq(ctxgoal.goal.arg(0), rhs))
def newgoal(self, newgoal: smt.BoolRef, **kwargs):
"""
Try to show newgoal is sufficient to prove current goal
"""
goalctx = self.top_goal()
self.lemmas.append(
kd.lemma(
smt.Implies(smt.And(goalctx.ctx + [newgoal]), goalctx.goal), **kwargs
)
)
self.goals[-1] = goalctx._replace(goal=newgoal)
return self.top_goal()
def unfold(self, *decls: smt.FuncDeclRef, at=None):
"""
Unfold the contents of a definition.
"""
for decl in decls:
if hasattr(decl, "defn"):
self.rewrite(decl.defn, at=at)
else:
raise ValueError("Unfold failed. Not a defined function")
return self.top_goal()
def apply(self, pf: kd.kernel.Proof, rev=False):
"""
`apply` matches the conclusion of a proven clause
"""
ctx, goal = self.goals.pop()
thm = pf.thm
if smt.is_quantifier(thm) and thm.is_forall():
vs, thm = kd.utils.open_binder(thm)
else:
vs = []
if smt.is_implies(thm):
pat = thm.arg(1)
elif smt.is_eq(thm):
if rev:
pat = thm.arg(1)
else:
pat = thm.arg(0)
else:
pat = thm
subst = kd.utils.pmatch(vs, pat, goal)
if subst is None:
raise ValueError(f"Apply tactic failed to apply lemma {pf} to goal {goal} ")
else:
pf1 = kd.kernel.instan([subst[v] for v in vs], pf)
self.lemmas.append(pf1)
if smt.is_implies(pf1.thm):
self.goals.append(GoalCtx(ctx, pf1.thm.arg(0)))
elif smt.is_eq(pf1.thm):
if rev:
self.goals.append(GoalCtx(ctx, pf1.thm.arg(0)))
else:
self.goals.append(GoalCtx(ctx, pf1.thm.arg(1)))
return self.top_goal()
def induct(self, x: smt.ExprRef):
"""
Apply an induction lemma instantiated on x.
"""
self.apply(x.induct())
if smt.is_and(self.top_goal().goal):
# self.split()
goalctx = self.goals.pop()
self.goals.extend(
[
goalctx._replace(goal=smt.simplify(c))
for c in reversed(goalctx.goal.children())
]
)
return self.top_goal()
def clear(self, n: int):
"""
Remove a hypothesis from the context
"""
ctxgoal = self.goals[-1]
ctxgoal.ctx.pop(n)
return self.top_goal()
def generalize(self, *vs):
"""
Put variables forall quantified back on goal. Useful for strengthening induction hypotheses.
"""
goalctx = self.goals.pop()
self.lemmas.append(kd.kernel.instan2(vs, smt.ForAll(vs, goalctx.goal)))
self.goals.append(goalctx._replace(goal=smt.ForAll(vs, goalctx.goal)))
return self.top_goal()
def show(self, thm: smt.BoolRef):
"""
To document the current goal
"""
goal = self.top_goal().goal
if not thm.eq(goal):
raise ValueError("Goal does not match", thm, goal)
return self.top_goal()
def assumption(self):
"""
Exact match of goal in the context
"""
ctx, goal = self.goals.pop()
if any([goal.eq(h) for h in ctx]):
return self.top_goal()
else:
raise ValueError("Assumption tactic failed", goal, ctx)
def have(self, conc: smt.BoolRef, **kwargs):
"""
Prove the given formula and add it to the current context
"""
ctx, goal = self.goals.pop()
self.lemmas.append(lemma(smt.Implies(smt.And(ctx), conc)), **kwargs)
self.goals.append(GoalCtx(ctx + [conc], conc))
return self.top_goal()
# TODO
# def search():
# def calc
def top_goal(self) -> GoalCtx:
if len(self.goals) == 0:
return "Nothing to do. Hooray!"
return self.goals[-1]
def __repr__(self):
if len(self.goals) == 0:
return "Nothing to do. Hooray!"
return repr(self.top_goal())
def qed(self) -> kd.kernel.Proof:
"""
return the actual final `Proof` of the lemma that was defined at the beginning.
"""
return kd.kernel.lemma(self.thm, by=self.lemmas)